Abhilekha Dalal

Kansas State University

Graduate Research Assistant – PhD Candidate


I am working as a Graduate Research Assistant in the Data Semantics Lab(Daselab), Kansas State University under the supervision of Dr. Pascal Hitzler. My research focuses on the Explainability of AI using Knowledge Graph as background knowledge. Some specific topics of interest include but are not limited to Explainable Artificial Intelligence, Deep Learning, Knowledge Graph, and Semantic Web.

Talks and Events

Explainable AI using Background Knowledge

One of the current key challenges in Explainable AI is in correctly interpreting activations of hidden neurons. It seems evident that accurate interpretations thereof would provide insights into the question what a deep learning system has internally detected as relevant on the input, thus lifting some of the black box character of deep learning systems. The state of the art on this front indicates that hidden node activations appear to be interpretable in a way that makes sense to humans, at least in some cases. Yet, systematic automated methods that would be able to first hypothesize an interpretation of a hidden neuron activations, and then verify it, are mostly missing. In this presentation, we provide such a method and demonstrate that it provides meaningful interpretations. It is based on using large-scale background knowledge – a class hierarchy of approx. 2 million classes curated from the Wikipedia Concept Hierarchy – together with a symbolic reasoning approach called concept induction based on description logics that was originally developed for applications in the Semantic Web field. Our results show that we can automatically attach meaningful labels from the background knowledge to individual neurons in the dense layer through a hypothesis and verification process.

Track: Deep Learning for and with Knowledge Graphs

Session Topics:

  • Deep Learning for and with Knowledge Graphs